Guest Post: Strength in Numbers

Ryan Brown is an instructor at AcerPlacer and is working on a BS in mathematics with a minor in secondary education. He is also an avid rock climber.

After teaching various types of mathematics, I have been asked countless times by students, “ When are we ever going to use this?” This question is asked when trying to isolate specific variables, simplify rational expressions, or evaluate complex numbers. Some answers that are given are very arduous and stretching quite far. Some ideas and concepts may not have a proper answer to the student, but in the complex world that we live in all that we have was designed using mathematics. Everything from the car we drive to the cell phone in our pockets – someone performed innumerable amount of math equations to see the safest design of a car, or perform tests to see how to make the battery in our phones last longer. All around us is magnificent architecture that was not just imagined and then someone starting digging the hole. There was intense preparation that went into each structure before we ever see the physical building and foundation being built.

Taking another stance on the exercise that mathematics provides the human brain is extremely powerful! Learning mathematics helps your learning skills on many levels. It helps you learn deeply and focus on tasks at hand. It helps to keep you organized and learn complex concepts without giving up easily. The human brain’s frontal lobe is not done developing until about age 25; the more we learn by that time, the more we can retain and remember. Mathematics is one of the best ways to train our brain how to remember the most information in the shortest amount of time. Our brains retain about 90% of the information that is input when we teach someone or try ourselves to perform a given task. Why mathematics helps us learn this form of learning so quickly is because we are given instant results and answers back in math. The second we make a mistake, we often cannot proceed with the equation, or our answer is not provided as an option. We don’t like to make mistakes; that is why we often take the easy way out and try to do a form of studying where we cannot make mistakes, like reading and listening to audios, which has a 5% retention for our brain.

To finish up the point of this article is that we use math everyday. We see the benefits of math everywhere. Our brain needs complex problem solving to stay young and active. We can mimic the study plan with math with all other courses to help us save time and energy. I hope this article was worth your time! Thank you for reading!

Advertisements

Guest Post: Why Study Math?

Jodie Larsen has a BS in applied mathematics from BYU-Idaho with a minor in biology. In addition to teaching at AcerPlacer, she tutors students on several topics in math.

“Why did you decide to study math?,” and, “Were you always good at math?,” are two questions which we, as instructors, hear on a near-daily basis, and they may seem to have simple answers but I, when I really think about it, realize that that is not the case.  I will use myself as an example on how to answer those questions.

I would not consider myself one of those Good Will Hunting type of people where I come up with complex equations and proofs off the top of my head which I write on windows to confuse people.  Though I find those types of things completely fascinating… I am more of a learner and user of mathematics rather than a discoverer and prover. Granted, I learn it more quickly than many, but my brain just likes puzzles, and that’s what I consider math to be.  Giant, elegant, beautiful puzzles.

Why did I personally decide to study math? Many people can’t fathom that I would want to focus my attention there.  There are many answers to that question, actually. I would say the biggest reason is that I had incredible teachers throughout my years who taught me well and, therefore, inspired me to love the subject and want to do more of it.  When you have great instructors, the subject matter will be more enjoyable no matter what you are studying. I know many students say they hate math and when I dig into why they do, oftentimes it comes down to the fact that they had poor teachers or were pushed through a flawed system for various reasons.  Having good instructors is paramount, I feel, and therefore it makes me want to be the best instructor I can be. I want to instill a love for math in as many as I can. It hurts me a little every time someone says, “I hate math.”. It shouldn’t be that way and I try, every day, to change that mindset for students and when the students’ mindsets start to change, you can see it in their demeanor and in their eyes.  They want to learn. They want to understand and enjoy it.

Another reason I went into math is simply that I was GOOD at it.  I excelled and felt confident and smart when doing it, so naturally one would gravitate towards things which make them feel that way.  To be very honest, when I was about to start college, I wasn’t sure what my major should be as I felt I needed to know what I wanted to BE when I grew up and then tailor my major to that career.  I had no idea what I wanted to be, actually, which was a little scary. I declared math to be my major as I loved it, and I knew it was applicable in so many fields so I ended up studying applied mathematics for my major and biology as my minor and the subjects are so beautifully harmonious together that I thoroughly enjoyed all my classes.

Was I always good at math?  Well, that’s a complex question.  I’ve already addressed it a bit above, but really, it was simply that I caught on quickly and had fun doing so; however, I did need to be taught… by excellent teachers. Students sometimes think that we came out of the womb being math geniuses, but I had to be taught like everyone else. The difference is, I thoroughly enjoyed it and chose to make it my field of study.  I hope that, through our course, students will discover they enjoy math as well when they understand it, and THAT is the ultimate key.  “I like it when I get it!!!”

What is the moral to this passage?  Other than just giving my personal history, I think it can be wrapped up into the following:  I have a profound love of math because of excellent teachers and my |mindset| (positive mindset for those not familiar with absolute value notation).  I, and my colleagues, aspire to create a love, or at least an appreciation, for math and to assist students in seeing how it can be applied and in what instances.  The ultimate compliment is when we hear a student exclaim that they like math, even though they may look around guiltily like it’s some sort of taboo thing to admit.  🙂

Don’t be scared of math – embrace it in it’s beauty and complexity and know you accomplished something great by mastering it.

Guest Post: The Math Stigma

This week’s post comes from Andrew Petersen, who graduated with a BS in theoretical physics from Weber State University. He recently accepted a post at a company doing data analysis, making this his last guest post as an AcerPlacer instructor.

Struggling with the attention needed to do well in math in my elementary school, my friend nudges me, “Uuugh – I suck at math, want to go ride bikes?” I agree, knowing that I will never get anywhere with math, and riding bikes sounds immensely more entertaining. As children we develop into a social construct already in place, slowly built upon by thousands of generations of humans in our cultures. This social boundary subconsciously forces us to think and do certain things to fall within the norm. One of those things is that math, as a subject learned by a lot of people, is hard.

From birth and within our social boundaries, we are told that math is hard by our peers, mentors, and often times our parents. Those we look up to have labelled mathematics as the F-chord of our academics, and we probably aren’t good at it. After being told this, when attempting to learn math, we expect it to be difficult – we know it’s challenging – it seems like an impassible hurdle. This thought process and structure, I think, is entirely ironic. The only reason some people are inherently good at math, or anything for that matter, is due to their development and environment when growing up. This tells me that how we think of and structure things (math, baseball, reading…) is completely moldable. Then I also think – “Isn’t that how we learn…everything?”

Often I thought being good at math was due to a higher intelligence and a crafty creativity that I simply didn’t have. After years of studying and graduating university, I finally have the realization that an inherent intelligence was not the key – persistence and good habits were. A lack of this realization manifests into students often misdirecting their blame and anger. Every once in awhile I will have a student who struggles through the whole class even while working hard, retakes the class, then repeats. That student then begins to blame the institution – “My instructor was at fault, the math at my school sucks.” Yet this is misdirected anger, because those students don’t lack the intelligence, they lack the habits when writing and learning mathematics. They don’t work problems top to bottom, they skip steps, and they just get lazy. It’s understandable, all of us are lazy at some point, but this is the skill that needs to change.

We all learn differently, and many times while sitting in class I have struggled to keep up with my notes. For a long while I would finish writing out my thoughts, then move on with what the instructor was at next – but I am behind at that point, and continue that progression for the rest of the class. In most classes, no matter the subject, the instructor must get through a set amount of material. Due to time constraints, that often means they must teach faster than the students are comfortable with. As a student, I would blame the professor, until I realized this was misguided. It took years to discover that I need to listen, regardless of what I get written down. It is far more important to absorb what the instructor is saying through my senses, then fill in the rest later.

To break this stigma, we need to instill a social construct around our children that math is like any other subject, we just must learn how to learn. First though, we must do this to ourselves, and redefine how we think of mathematics in the first place – it does not take a especially smart person to learn math, it takes persistence and good habits.

Editor’s Note: An F-chord is a particularly difficult chord to play on a guitar.

Don’t Take My Word For It

Although it may be hard to believe, I am not the sole person who sees value in studying math. Before we begin with my thoughts, it might be helpful to see what others have to say.

5 Reasons Why You Should Study Mathematics – This article from The Complete University Guide talks about why you should pursue mathematics as your main focus of study. While that isn’t the main focus of this blog, it brings up some good points for how mathematics can make you more marketable.

10 Reasons You Should Study Math – In this six minute video, Danny Doucette argues for why math should be studied and touches on things such as the transferability of skills, the nature of developing industries, and the responsibilities of citizens, among others.

The importance of maths in everyday life – The author of this article from the Times of India is a math teacher. Not only do they give great reasons to study math, they also give great advice in how to teach it, especially for younger students.

Why Do We Learn Math – While the entire series of articles this is a part of is fantastic, this most directly addresses our topic at hand by taking the statement, “Math makes you think,” and explaining one way it actually does that.

6 Everyday Examples of Math in the Real World – Are you curious how math is used at home? This article focuses on math outside of a potential workplace to how it might benefit you more generally.

Examining How Mathematics is Used in the Workplace – This article seeks to examine a few studies on how math is used in workplaces from automobile production to nursing. Published by the Mathematical Association of America, it is a dense but interesting read.

Table of Examples – Tired of articles and just want to look up an example for your chosen career? Then this page is for you. Published by the Math Department at British Columbia Institute of Technology, it provides examples of problems that might be seen in various fields.